This section discusses the conversion specifications for floating-point numbers: the `%f', `%e', `%E', `%g', and `%G' conversions.
The `%f' conversion prints its argument in fixed-point notation, producing output of the form [-
]ddd.
ddd, where the number of digits following the decimal point is controlled by the precision you specify.
The `%e' conversion prints its argument in exponential notation, producing output of the form [-
]d.
ddde
[+
|-
]dd. Again, the number of digits following the decimal point is controlled by the precision. The exponent always contains at least two digits. The `%E' conversion is similar but the exponent is marked with the letter `E' instead of `e'.
The `%g' and `%G' conversions print the argument in the style of `%e' or `%E' (respectively) if the exponent would be less than -4 or greater than or equal to the precision; otherwise they use the `%f' style. Trailing zeros are removed from the fractional portion of the result and a decimal-point character appears only if it is followed by a digit.
The following flags can be used to modify the behavior:
The precision specifies how many digits follow the decimal-point character for the `%f', `%e', and `%E' conversions. For these conversions, the default precision is 6
. If the precision is explicitly 0
, this suppresses the decimal point character entirely. For the `%g' and `%G' conversions, the precision specifies how many significant digits to print. Significant digits are the first digit before the decimal point, and all the digits after it. If the precision 0
or not specified for `%g' or `%G', it is treated like a value of 1
. If the value being printed cannot be expressed accurately in the specified number of digits, the value is rounded to the nearest number that fits.
Without a type modifier, the floating-point conversions use an argument of type double
. (By the default argument promotions, any float
arguments are automatically converted to double
.) The following type modifier is supported:
long double
. Here are some examples showing how numbers print using the various floating-point conversions. All of the numbers were printed using this template string:
"|%12.4f|%12.4e|%12.4g|\n"
Here is the output:
| 0.0000| 0.0000e+00| 0| | 1.0000| 1.0000e+00| 1| | -1.0000| -1.0000e+00| -1| | 100.0000| 1.0000e+02| 100| | 1000.0000| 1.0000e+03| 1000| | 10000.0000| 1.0000e+04| 1e+04| | 12345.0000| 1.2345e+04| 1.234e+04| | 100000.0000| 1.0000e+05| 1e+05| | 123456.0000| 1.2346e+05| 1.234e+05|
Notice how the `%g' conversion drops trailing zeros.