In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.
The keyword __attribute__
allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. Eight attributes, noreturn
, const
, format
, section
, constructor
, destructor
, unused
and weak
are currently defined for functions. Other attributes, including section
are supported for variables declarations (see Variable Attributes) and for types (see Type Attributes).
You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __noreturn__
instead of noreturn
.
noreturn
abort
and exit
, cannot return. GNU CC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn
to tell the compiler this fact. For example,
void fatal () __attribute__ ((noreturn)); void fatal (...) { ... /* Print error message. */ ... exit (1); }
The noreturn
keyword tells the compiler to assume that fatal
cannot return. It can then optimize without regard to what would happen if fatal
ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.
Do not assume that registers saved by the calling function are restored before calling the noreturn
function.
It does not make sense for a noreturn
function to have a return type other than void
.
The attribute noreturn
is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:
typedef void voidfn (); volatile voidfn fatal;
const
const
. For example,
int square (int) __attribute__ ((const));
says that the hypothetical function square
is safe to call fewer times than the program says.
The attribute const
is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:
typedef int intfn (); extern const intfn square;
This approach does not work in GNU C++ from 2.6.0 on, since the language specifies that the `const' must be attached to the return value.
Note that a function that has pointer arguments and examines the data pointed to must not be declared const
. Likewise, a function that calls a non-const
function usually must not be const
. It does not make sense for a const
function to return void
.
format (archetype, string-index, first-to-check)
format
attribute specifies that a function takes printf
or scanf
style arguments which should be type-checked against a format string. For example, the declaration:
extern int my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3)));
causes the compiler to check the arguments in calls to my_printf
for consistency with the printf
style format string argument my_format
.
The parameter archetype determines how the format string is interpreted, and should be either printf
or scanf
. The parameter string-index specifies which argument is the format string argument (starting from 1), while first-to-check is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf
), specify the third parameter as zero. In this case the compiler only checks the format string for consistency.
In the example above, the format string (my_format
) is the second argument of the function my_print
, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.
The format
attribute allows you to identify your own functions which take format strings as arguments, so that GNU CC can check the calls to these functions for errors. The compiler always checks formats for the ANSI library functions printf
, fprintf
, sprintf
, scanf
, fscanf
, sscanf
, vprintf
, vfprintf
and vsprintf
whenever such warnings are requested (using `-Wformat'), so there is no need to modify the header file `stdio.h'.
section ("section-name")
text
section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section
attribute specifies that a function lives in a particular section. For example, the declaration:
extern void foobar (void) __attribute__ ((section ("bar")));
puts the function foobar
in the bar
section.
Some file formats do not support arbitrary sections so the section
attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.
constructor
destructor
constructor
attribute causes the function to be called automatically before execution enters main ()
. Similarly, the destructor
attribute causes the function to be called automatically after main ()
has completed or exit ()
has been called. Functions with these attributes are useful for initializing data that will be used implicitly during the execution of the program. These attributes are not currently implemented for Objective C.
unused
weak
weak
attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions which can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker.
alias ("target")
alias
attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance,
void __f () { /* do something */; } void f () __attribute__ ((weak, alias ("__f")));
declares `f' to be a weak alias for `__f'. In C++, the mangled name for the target must be used.
regparm (number)
regparm
attribute causes the compiler to pass up to number integer arguments in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments will continue to be passed all of their arguments on the stack.
stdcall
stdcall
attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments.
cdecl
cdecl
attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments. This is useful to override the effects of the `-mrtd' switch. You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.
Some people object to the __attribute__
feature, suggesting that ANSI C's #pragma
should be used instead. There are two reasons for not doing this.
It is impossible to generate #pragma
commands from a macro.
There is no telling what the same #pragma
might mean in another compiler.
These two reasons apply to almost any application that might be proposed for #pragma
. It is basically a mistake to use #pragma
for anything.