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Motivation
 History: invented by Rudolf Bayer (1972) who called them 

"symmetric binary B-trees", its modern name by Leo J. 
Guibas and Robert Sedgewick ( 1978). 

 Red-black trees, along with AVL trees, offer the best 
possible worst-case guarantees for insertion time, 
deletion time, and search time -- O(log n).

 many data structures used in computational geometry 
can be based on red-black trees.

 in functional programming, used to construct associative 
arrays and sets which can retain previous versions after 
mutations. 
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Objectives
 Understand the definition, properties and operations of 

Red-Black Trees.
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Outline
 Red-Black Trees

 Definition

 Operation
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Red-Black Trees: Definition 

 The red-black tree is a binary search tree whose nodes 

colored either black or red, under properties:

 Property#1. Every node is colored either red or black

 Property#2. The root is black

 Property#3. If a node is red, its children must be black

 Property#4. Every path from a node to a null reference 

must contain the same number of black nodes
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Red-Black Trees

 Example: (insertion sequence: 10, 85, 15, 70, 20, 60, 30, 
50, 65, 80, 90, 40, 5, 55)
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Implications

 Consecutive red nodes are disallowed (Pr#3)

 Every red node must have a black parent (Pr#3)

 The longest possible path from the root to a leaf is no 
more than twice as long as the shortest possible path. 
(Pr#3 & Pr#4) 
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 B = total black nodes 
from root to leaf

 N = total all nodes

 H = height

All operation guaranteed 
logarithmic.

The least The most
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Variants of the description

 A red-black tree as a binary search tree whose edges
(instead of nodes) are colored in red or black.

 The color of a node in our terminology corresponds to 
the color of the edge connecting the node to its parent, 
except that the root node is always black.
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Algorithm: Finding A node

 As in the binary search node…
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Algorithm: Inserting a Node (1)

 Inserted as in binary search tree as a new leaf node, but 
the node must be colored red 

 why?

• new item is always inserted as leaf in the tree

• if we color a new item black, then we will have a 
longer path of black nodes (violate property #4)

 Is the resulting tree still a red-black tree?

 if the parent is black, no problemo

 If it is the only node in the tree (i.e., it is a root), 
repaint it to be a black node.

 if the parent is red
(two consecutive red nodes  violate Pr #3), 
then should be restructured….. 
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Algorithm: Inserting a Node (2)

 Let, the new node is N, the Parent node is P, and the 
sibling of the parent node is U (from ‘uncle’), and the 
parent of P is G (from ‘grandparent’). If P and U are red
and G is black, repaint P and U to be black, and G to be 
red (color flipping)

 G, then, 

• violate Pr#2 (when it is the root)  G is changed just 
to be black (as in the first page).

• Violate Pr#3 (when G’s parent is red)   perform the 
algo. with G as N.

G

N

UP

G

N

UP



SDA/RED-BLACK/DN-SUR/V2.0/13

Algorithm: Inserting a Node (3)

 If P is red but U is black (or empty substree), then there 
are four subcases:

 N is left child of P and 
U is right-sibling of P SRR

 N is right child of P and 
U is left-sibling of P SLR

 N is right child if P and 
U is right-sibling of P DRR 

 N is left child if P and 
U is left-sibling of P DLR
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Single Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

P: red black

G: black red
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Double Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

N: red black

G: black red
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Top-down algorithm

 Color-flipping described previously performed buttom-up 
wise (from the insertion position up to above).

 Weiss’book recommends to do color-flipping top-down 
wise: 

 On the way going down from the root during in 
finding the insertion position, if the current node has 
two red children, 
color flip them (the current and the children).

 The flipping will be possibly followed by other flipping 
as well as the rotation

 When the insertion position reached and the new red 
node inserted, the next possibly operation is just the 
rotation
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Algorithm: deletion

 Firstly, the deletion following the binary seach tree’s 
deletion algorithms

 Every deletion causes in deleting a leaf node or 
deleting an internal node with one child

 Deleting red node no problemo

 Deleting black node whose a red child will also be 
OK by switching its color with its child’s color

 The problem, when both the deleted node and its child 
are black
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Summary
 Red-Black trees use color as balancing information 

instead of height  in AVL trees.

 An insertion may cause a local perturbation (two 
consecutive red nodes)

 The pertubation is either

 resolved locally (rotations), or

 propagated to a higher level in the tree by recoloring 
(color flip)

 O(1) for a rotation or color flip

 At most one restructuring per insertion.

 O(log n) color flips

 Total time: O(log n)


