((.( (’_
«( L\'

-44’9}"

Struktur Data & Algoritm
(Data Structures & Algorithms)

Red Black Tree

Suryana Setiawan setiawan@cs.ui.ac.id
Denny denny@ecs.ui.ac.id

Fakultas Ilmu Komputer
Universitas Indonesia

Semester Ganjil - 2006/2007

Version 2.0 - Internal Use Only




Motivation

History: invented by Rudolf Bayer (1972) who called them
"symmetric binary B-trees", its modern name by Leo J.
Guibas and Robert Sedgewick ( 1978).

Red-black trees, along with AVL trees, offer the best
possible worst-case guarantees for insertion time,
deletion time, and search time -- O(log n).

many data structures used in computational geometry
can be based on red-black trees.

In functional programming, used to construct associative
arrays and sets which can retain previous versions after
mutations.

SDA/RED-BLACK/DN-SUR/V2.0/2 i%)fﬁ



Objectives

Understand the definition, properties and operations of
Red-Black Trees.

SDA/RED-BLACK/DN-SUR/V2.0/3 i%?‘



Outline

Red-Black Trees
Definition
Operation

SDA/RED-BLACK/DN-SUR/V2.0/4 i%?‘



Red-Black Trees: Definition

The red-black tree is a binary search tree whose nodes

colored either black or red, under properties:

Property#1. Every node is colored either red or black

Property#2. The root is black

Property#3. If a node Is red, its children must be black

Property#4. Every path from a node to a null reference

must contain the same number of black nodes

SDA/RED-BLACK/DN-SUR/V2.0/5 i%?‘



Red-Black Trees

Example: (insertion sequence: 10, 85, 15, 70, 20, 60, 30,
50, 65, 80, 90, 40, 5, 55)




Implications

Consecutive red nodes are disallowed (Pr#3)
Every red node must have a black parent (Pr#3)

The longest possible path from the root to a leaf is no
more than twice as long as the shortest possible path.
(Pr#3 & Pr#4)

SDA/RED-BLACK/DN-SUR/V2.0/7 i%?‘



The least ‘ The most
‘/‘\‘ ‘/ \‘
RN RN
/‘\ /‘\ /‘\ /‘\
O 00 0060 00 ©
S N S B = total black nodes

2B <« N +1< 2% from root to leaf

B _ 2B N = total all nodes
log2” =B log2°" =2B H = height
B<log(N+1) log(N +1)<2B

%IOQ( N +1) < B <log(N +1) All operation guaranteed

logarithmic.
[ log(N +1) < H < 2log(N +1)

SDA/RED-BLACK/DN-SUR/V2.0/8 £




Variants of the description

A red-black tree as a binary search tree whose edges
(instead of nodes) are colored in red or black.

The color of a node In our terminology corresponds to
the color of the edge connecting the node to its parent,
except that the root node is always black.

@/@\@ 15/ 30 \7
N O /7N PN
/@ 20 /@\ /@ /10 20 /60\ '85\
O (50 @@\@ 5 50 65 (80) (90
/ \ / \
o & 40) (55

SDA/RED-BLACK/DN-SUR/V2.0/9 i%?‘



Algorithm: Finding A node

As In the binary search node...

SDA/RED-BLACK/DN-SUR/V2.0/10 i%)fﬁ



Algorithm: Inserting a Node (1)

Inserted as in binary search tree as a new leaf node, but
the node must be colored red
why?
e new item is always inserted as leaf in the tree

e if we color a new item black, then we will have a
longer path of black nodes (violate property #4)

Is the resulting tree still a red-black tree?
If the parent is black, no problemo

If it is the only node in the tree (i.e., it is a root),
repaint it to be a black node.

If the parent is red _
(two consecutive red nodes - violate Pr #3),

then should be restructured.....

SDA/RED-BLACK/DN-SUR/V2.0/11 i%?‘



Algorithm: Inserting a Node (2)

Let, the new node is N, the Parent node is P, and the
sibling of the parent node is U (from ‘uncle’), and the
parent of P is G (from ‘grandparent’). If P and U are red
and G is black, repaint P and U to be black, and G to be

red (color flipping)

on e

e violate Pr#2 (when it is the root) 2> G is changed just
to be black (as in the first page).

e Violate Pr#3 (when G’s parent is red) - perform the
algo. with G as N.

SDA/RED-BLACK/DN-SUR/V2.0/12 i%?‘



Algorithm: Inserting a Node (3)

If P is red but U Is black (or empty substree), then there
are four subcases:

N is left child of P and AN
U is right-sibling of P > SRR NN
N

G

N is right child of P and D

U Is left-sibling of P = SLR ANV
G

N is right child if P and 7

U is right-sibling of P > DRR N 7N

N is left child if P and VAR

U is left-sibling of P - DLR VRN

SDA/RED-BLACK/DN-SUR/V2.0/13 i%)fﬁ



Single Rotation

G

SR
D E
N: new node Color Changes:

G: grandparent

SDA/RED-BLACK/DN-SUR/V2.0/14 £



Double Rotation

N: new node Color Changes:

G: grandparent

SDA/RED-BLACK/DN-SUR/V2.0/15 £



Insert 45 (original)

SN
O O

o




Insert 45

Violate
Pr#3




Insert 45 (color flip)

Then, single
rotation

Violate
Pr#3

Color Flip

SDA/RED-BLACK/DN-SUR/V2.0/18 £



Insert 45 (single rotation)




Top-down algorithm

Color-flipping described previously performed buttom-up
wise (from the insertion position up to above).

Weiss’book recommends to do color-flipping top-down
wise:
On the way going down from the root during In
finding the insertion position, if the current node has

two red children,
color flip them (the current and the children).

The flipping will be possibly followed by other flipping
as well as the rotation

When the insertion position reached and the new red
node inserted, the next possibly operation is just the
rotation

SDA/RED-BLACK/DN-SUR/V2.0/20 i%f*‘



Algorithm: deletion

Firstly, the deletion following the binary seach tree’s
deletion algorithms

Every deletion causes in deleting a leaf node or
deleting an internal node with one child

Deleting red node = no problemo

Deleting black node whose a red child - will also be
OK by switching its color with its child’s color

The problem, when both the deleted node and its child
are black

SDA/RED-BLACK/DN-SUR/V2.0/21 i%)fﬁ



Summary

Red-Black trees use color as balancing information
Instead of height in AVL trees.

An insertion may cause a local perturbation (two
consecutive red nodes)

The pertubation is either
resolved locally (rotations), or

propagated to a higher level in the tree by recoloring
(color flip)

O(1) for arotation or color flip

At most one restructuring per insertion.
O(log n) color flips

Total time: O(log n)

SDA/RED-BLACK/DN-SUR/V2.0/22 i%f*‘



