
Struktur Data & Algoritme
(Data Structures & Algorithms)

Fakultas Ilmu Komputer
Universitas Indonesia

Semester Ganjil - 2006/2007
Version 2.0 - Internal Use Only

Denny denny@cs.ui.ac.id

Suryana Setiawan setiawan@cs.ui.ac.id

Red Black Tree

SDA/RED-BLACK/DN-SUR/V2.0/2

Motivation
 History: invented by Rudolf Bayer (1972) who called them

"symmetric binary B-trees", its modern name by Leo J.
Guibas and Robert Sedgewick (1978).

 Red-black trees, along with AVL trees, offer the best
possible worst-case guarantees for insertion time,
deletion time, and search time -- O(log n).

 many data structures used in computational geometry
can be based on red-black trees.

 in functional programming, used to construct associative
arrays and sets which can retain previous versions after
mutations.

SDA/RED-BLACK/DN-SUR/V2.0/3

Objectives
 Understand the definition, properties and operations of

Red-Black Trees.

SDA/RED-BLACK/DN-SUR/V2.0/4

Outline
 Red-Black Trees

 Definition

 Operation

SDA/RED-BLACK/DN-SUR/V2.0/5

Red-Black Trees: Definition

 The red-black tree is a binary search tree whose nodes

colored either black or red, under properties:

 Property#1. Every node is colored either red or black

 Property#2. The root is black

 Property#3. If a node is red, its children must be black

 Property#4. Every path from a node to a null reference

must contain the same number of black nodes

SDA/RED-BLACK/DN-SUR/V2.0/6

30

15

5 50

10

70

8560

40 55

80 9065

20

Red-Black Trees

 Example: (insertion sequence: 10, 85, 15, 70, 20, 60, 30,
50, 65, 80, 90, 40, 5, 55)

SDA/RED-BLACK/DN-SUR/V2.0/7

Implications

 Consecutive red nodes are disallowed (Pr#3)

 Every red node must have a black parent (Pr#3)

 The longest possible path from the root to a leaf is no
more than twice as long as the shortest possible path.
(Pr#3 & Pr#4)

SDA/RED-BLACK/DN-SUR/V2.0/8

)1log(2)1log(

)1log()1log(
2

1

2)1log()1log(

22log2log

212

1212

2

2

2

NHN

NBN

BNNB

BB

N

N

BB

BB

BB

 B = total black nodes
from root to leaf

 N = total all nodes

 H = height

All operation guaranteed
logarithmic.

The least The most

SDA/RED-BLACK/DN-SUR/V2.0/9

Variants of the description

 A red-black tree as a binary search tree whose edges
(instead of nodes) are colored in red or black.

 The color of a node in our terminology corresponds to
the color of the edge connecting the node to its parent,
except that the root node is always black.

30

15

5 50

10

70

8560

40 55

80 9065

20

30

15

5 50

10

70

8560

40 55

80 9065

20

SDA/RED-BLACK/DN-SUR/V2.0/10

Algorithm: Finding A node

 As in the binary search node…

SDA/RED-BLACK/DN-SUR/V2.0/11

Algorithm: Inserting a Node (1)

 Inserted as in binary search tree as a new leaf node, but
the node must be colored red

 why?

• new item is always inserted as leaf in the tree

• if we color a new item black, then we will have a
longer path of black nodes (violate property #4)

 Is the resulting tree still a red-black tree?

 if the parent is black, no problemo

 If it is the only node in the tree (i.e., it is a root),
repaint it to be a black node.

 if the parent is red
(two consecutive red nodes violate Pr #3),
then should be restructured…..

SDA/RED-BLACK/DN-SUR/V2.0/12

Algorithm: Inserting a Node (2)

 Let, the new node is N, the Parent node is P, and the
sibling of the parent node is U (from ‘uncle’), and the
parent of P is G (from ‘grandparent’). If P and U are red
and G is black, repaint P and U to be black, and G to be
red (color flipping)

 G, then,

• violate Pr#2 (when it is the root) G is changed just
to be black (as in the first page).

• Violate Pr#3 (when G’s parent is red) perform the
algo. with G as N.

G

N

UP

G

N

UP

SDA/RED-BLACK/DN-SUR/V2.0/13

Algorithm: Inserting a Node (3)

 If P is red but U is black (or empty substree), then there
are four subcases:

 N is left child of P and
U is right-sibling of P SRR

 N is right child of P and
U is left-sibling of P SLR

 N is right child if P and
U is right-sibling of P DRR

 N is left child if P and
U is left-sibling of P DLR

G

N

UP

G

N

U P

G

N

UP

G

N

U P

SDA/RED-BLACK/DN-SUR/V2.0/14

A B

G

N

UP

C D E A B

GN

U

P

C

D E

Single Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

P: red black

G: black red

SDA/RED-BLACK/DN-SUR/V2.0/15

B C

G

N

UP

A D E A B

GP

U

N

C

D E

Double Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

N: red black

G: black red

SDA/RED-BLACK/DN-SUR/V2.0/16

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45 (original)

SDA/RED-BLACK/DN-SUR/V2.0/17

45

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45

Violate
Pr#3

SDA/RED-BLACK/DN-SUR/V2.0/18

45

5540

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45 (color flip)

Color Flip

Violate
Pr#3 50

Then, single
rotation

SDA/RED-BLACK/DN-SUR/V2.0/19

45

30

15

5

10 70

85

60

50

55

80 90

65

20

40

Insert 45 (single rotation)

SDA/RED-BLACK/DN-SUR/V2.0/20

Top-down algorithm

 Color-flipping described previously performed buttom-up
wise (from the insertion position up to above).

 Weiss’book recommends to do color-flipping top-down
wise:

 On the way going down from the root during in
finding the insertion position, if the current node has
two red children,
color flip them (the current and the children).

 The flipping will be possibly followed by other flipping
as well as the rotation

 When the insertion position reached and the new red
node inserted, the next possibly operation is just the
rotation

SDA/RED-BLACK/DN-SUR/V2.0/21

Algorithm: deletion

 Firstly, the deletion following the binary seach tree’s
deletion algorithms

 Every deletion causes in deleting a leaf node or
deleting an internal node with one child

 Deleting red node no problemo

 Deleting black node whose a red child will also be
OK by switching its color with its child’s color

 The problem, when both the deleted node and its child
are black

SDA/RED-BLACK/DN-SUR/V2.0/22

Summary
 Red-Black trees use color as balancing information

instead of height in AVL trees.

 An insertion may cause a local perturbation (two
consecutive red nodes)

 The pertubation is either

 resolved locally (rotations), or

 propagated to a higher level in the tree by recoloring
(color flip)

 O(1) for a rotation or color flip

 At most one restructuring per insertion.

 O(log n) color flips

 Total time: O(log n)

