
Struktur Data & Algoritme
(Data Structures & Algorithms)

Fakultas Ilmu Komputer
Universitas Indonesia

Semester Ganjil - 2006/2007
Version 2.0 - Internal Use Only

Denny denny@cs.ui.ac.id

Suryana Setiawan setiawan@cs.ui.ac.id

Red Black Tree

SDA/RED-BLACK/DN-SUR/V2.0/2

Motivation
 History: invented by Rudolf Bayer (1972) who called them

"symmetric binary B-trees", its modern name by Leo J.
Guibas and Robert Sedgewick (1978).

 Red-black trees, along with AVL trees, offer the best
possible worst-case guarantees for insertion time,
deletion time, and search time -- O(log n).

 many data structures used in computational geometry
can be based on red-black trees.

 in functional programming, used to construct associative
arrays and sets which can retain previous versions after
mutations.

SDA/RED-BLACK/DN-SUR/V2.0/3

Objectives
 Understand the definition, properties and operations of

Red-Black Trees.

SDA/RED-BLACK/DN-SUR/V2.0/4

Outline
 Red-Black Trees

 Definition

 Operation

SDA/RED-BLACK/DN-SUR/V2.0/5

Red-Black Trees: Definition

 The red-black tree is a binary search tree whose nodes

colored either black or red, under properties:

 Property#1. Every node is colored either red or black

 Property#2. The root is black

 Property#3. If a node is red, its children must be black

 Property#4. Every path from a node to a null reference

must contain the same number of black nodes

SDA/RED-BLACK/DN-SUR/V2.0/6

30

15

5 50

10

70

8560

40 55

80 9065

20

Red-Black Trees

 Example: (insertion sequence: 10, 85, 15, 70, 20, 60, 30,
50, 65, 80, 90, 40, 5, 55)

SDA/RED-BLACK/DN-SUR/V2.0/7

Implications

 Consecutive red nodes are disallowed (Pr#3)

 Every red node must have a black parent (Pr#3)

 The longest possible path from the root to a leaf is no
more than twice as long as the shortest possible path.
(Pr#3 & Pr#4)

SDA/RED-BLACK/DN-SUR/V2.0/8

)1log(2)1log(

)1log()1log(
2

1

2)1log()1log(

22log2log

212

1212

2

2

2













NHN

NBN

BNNB

BB

N

N

BB

BB

BB

 B = total black nodes
from root to leaf

 N = total all nodes

 H = height

All operation guaranteed
logarithmic.

The least The most

SDA/RED-BLACK/DN-SUR/V2.0/9

Variants of the description

 A red-black tree as a binary search tree whose edges
(instead of nodes) are colored in red or black.

 The color of a node in our terminology corresponds to
the color of the edge connecting the node to its parent,
except that the root node is always black.

30

15

5 50

10

70

8560

40 55

80 9065

20

30

15

5 50

10

70

8560

40 55

80 9065

20

SDA/RED-BLACK/DN-SUR/V2.0/10

Algorithm: Finding A node

 As in the binary search node…

SDA/RED-BLACK/DN-SUR/V2.0/11

Algorithm: Inserting a Node (1)

 Inserted as in binary search tree as a new leaf node, but
the node must be colored red

 why?

• new item is always inserted as leaf in the tree

• if we color a new item black, then we will have a
longer path of black nodes (violate property #4)

 Is the resulting tree still a red-black tree?

 if the parent is black, no problemo

 If it is the only node in the tree (i.e., it is a root),
repaint it to be a black node.

 if the parent is red
(two consecutive red nodes  violate Pr #3),
then should be restructured…..

SDA/RED-BLACK/DN-SUR/V2.0/12

Algorithm: Inserting a Node (2)

 Let, the new node is N, the Parent node is P, and the
sibling of the parent node is U (from ‘uncle’), and the
parent of P is G (from ‘grandparent’). If P and U are red
and G is black, repaint P and U to be black, and G to be
red (color flipping)

 G, then,

• violate Pr#2 (when it is the root)  G is changed just
to be black (as in the first page).

• Violate Pr#3 (when G’s parent is red)  perform the
algo. with G as N.

G

N

UP

G

N

UP

SDA/RED-BLACK/DN-SUR/V2.0/13

Algorithm: Inserting a Node (3)

 If P is red but U is black (or empty substree), then there
are four subcases:

 N is left child of P and
U is right-sibling of P SRR

 N is right child of P and
U is left-sibling of P SLR

 N is right child if P and
U is right-sibling of P DRR

 N is left child if P and
U is left-sibling of P DLR

G

N

UP

G

N

U P

G

N

UP

G

N

U P

SDA/RED-BLACK/DN-SUR/V2.0/14

A B

G

N

UP

C D E A B

GN

U

P

C

D E

Single Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

P: red black

G: black red

SDA/RED-BLACK/DN-SUR/V2.0/15

B C

G

N

UP

A D E A B

GP

U

N

C

D E

Double Rotation

N: new node

P: parent

U: uncle

G: grandparent

Color Changes:

N: red black

G: black red

SDA/RED-BLACK/DN-SUR/V2.0/16

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45 (original)

SDA/RED-BLACK/DN-SUR/V2.0/17

45

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45

Violate
Pr#3

SDA/RED-BLACK/DN-SUR/V2.0/18

45

5540

30

15

5

10

70

8560

50

55

80 9065

20

40

Insert 45 (color flip)

Color Flip

Violate
Pr#3 50

Then, single
rotation

SDA/RED-BLACK/DN-SUR/V2.0/19

45

30

15

5

10 70

85

60

50

55

80 90

65

20

40

Insert 45 (single rotation)

SDA/RED-BLACK/DN-SUR/V2.0/20

Top-down algorithm

 Color-flipping described previously performed buttom-up
wise (from the insertion position up to above).

 Weiss’book recommends to do color-flipping top-down
wise:

 On the way going down from the root during in
finding the insertion position, if the current node has
two red children,
color flip them (the current and the children).

 The flipping will be possibly followed by other flipping
as well as the rotation

 When the insertion position reached and the new red
node inserted, the next possibly operation is just the
rotation

SDA/RED-BLACK/DN-SUR/V2.0/21

Algorithm: deletion

 Firstly, the deletion following the binary seach tree’s
deletion algorithms

 Every deletion causes in deleting a leaf node or
deleting an internal node with one child

 Deleting red node no problemo

 Deleting black node whose a red child will also be
OK by switching its color with its child’s color

 The problem, when both the deleted node and its child
are black

SDA/RED-BLACK/DN-SUR/V2.0/22

Summary
 Red-Black trees use color as balancing information

instead of height in AVL trees.

 An insertion may cause a local perturbation (two
consecutive red nodes)

 The pertubation is either

 resolved locally (rotations), or

 propagated to a higher level in the tree by recoloring
(color flip)

 O(1) for a rotation or color flip

 At most one restructuring per insertion.

 O(log n) color flips

 Total time: O(log n)

