Struktur Data dan Algoritma

Generic Type in Java

Suryana Setiawan, Ruli Manurung & Ade Azurat

(acknowledgments: Denny)

Fasilkom Ul

d
o

«((’_
» Q
V, O
s«(é&%\'

SUR - HMM - AA Fasilkom Ul - IKI20100/I1KI80110P 2009/2010 - Ganjil - Minggu 3

Polymorphism vs Generics

® One way that object-oriented languages allow
generalization is through polymorphism.

® You can write a method that takes a base class
object as and then use that method with any
class derived from that base class.

® Sometimes being constrained to a single
hierarchy is too limiting.

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Interface vs Generics

B |nterface allows us to loosen the single
inheritance.

B Sometimes even an interface is too restrictive.
An interface still requires that your code work
with that particular interface.

® Now, with generic type support, your method is
more general and can be used in more places.

® And, not only method but also class!

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Motivation

® Generics implement the concept of parameterized

type.

" We usually parameterize a method with their arguments
as values. Now we can parameterized not only with
values (object) but also with type (class).

B |t provides type safe container that avoid possible

runtime error on collection.

B Ability to create more general-purpose code that
can be highly re-used (reusable and
expressiveness)

((.((P
(

{
.
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Case study: Automobile Holder

® We would like to have a container of automobile.

«((’_
» Q
V, O
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Non-generic approach

B See: generics/Holderl.java
" |t is not very reusable, since it can't be used to hold

anything else.
" We prefer not to write a new one of these for every

type we encounter.

i((((’
GG
@«ék%\'

é

2009/2010 - Ganjil - Minggu 3

Fasilkom Ul - IKI20100/1KI80110P

SUR - HMM - AA

Non-Generic Approach (2)

B See: generics/Holder2.java

" |t is quite reusable.
" |t could hold anything.

" But in one pro_?_ram, you may want to have it only
contains specific type.

® Possible run-time error due to incorrect casting.

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

((.(('
V’ O
s(ék%‘

K|

Generic Approach

B See: generic/Holder3.java

" |t is still reusable
" |t could be parameterized by any class

® Once it is parameterized, it could only contain a specific
type only.
" No possible run-time error due to incorrect casting.

® No casting needed.

%
(>
ggane

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

g
"s«(Q

Generic Interfaces

® Generics also work with interface.
B See: generics/Generator.java

public interface Generator<T> {
T next();

%
>
S, 5

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

g
'ls (O

Implementation of Generic Interface

B See: generics/Fibonacci.java
® Naive algorithm.

B | et's go one step further and make an Iterable
Fibonacci generator.

«((’_
» Q
V, O
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Iterable Fibonacci generator

® We may not always have control of the original
code. (to modify it)

® We may not want to rewrite when you don't have
to.

® How can we just reuse them, but we don't need to
modify it and overriding some of the methods.

B Solution: We can create adapter to produce the
desired interface.

B See: generics/lIterableFibonacci.java

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

s the IterableFibonacci.java better than
Fibonacci.java?

® |n what sense?

® How can we improve it?

i((((’
S
@«ék%\'

é

2009/2010 - Ganjil - Minggu 3

Fasilkom Ul - IKI20100/1KI80110P

SUR - HMM - AA

Generic Methods

B So far we've looked at parameterizing entire
classes.

B We can also parameterize methods within a class.
® The class itself may or may not be parameterized
B See: generics/GenericMethods.java

(((('
(.% %~

{
.
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

A Generic Method to use with Generators

B |t is convenient to use a generator to fill a
Collection.

B |t make sense to “generify” this operation.

B See:
® generics/Fibonacci.java
" generics/CoffeGenerator.java
® generics/Generators.java

«((’_
» Q
V’ C
s(ék%‘

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

General Purpose Generator

B | et's go further!

B We can create a class that produces a Generator for
any class that has default constructor.

B See:
" generics/BasicGenerator.java
® generics/CountedObject.java
® generics/BasicGeneratorDemo.java

((.(('
V’ O
s(ék%‘

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

The application of Generics

B A Set Utility

B Consider the mathematical relationships that can
be expressed using Sets.

B These can be conveniently defined as generic
methods, to be used with all different types.

B set of numbers, set of books and etc.

B See:

® generics/WatercolorSets.java
" net/mindview/util/Sets.java

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Anonymous Inner Class

® Generics can also be used with anonymous inner
class

® See: generics/BankTeller.java

((((’_
(.% %~

{
.
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Bound (Contrained) type

® Now suppose that we want to program a Minimum
function to find the minimum value in a generically
typed array?

«((’_
» Q
V, O
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Bound (Contrained) type

public class Utility {
public static <E> E min(E[] a) {

E smallest = a[O0];
for (int i = 1; i < a.length; i++)

if (a[i] .compareTo(smallest) < 0)
smallest = a[i];
return smallest;

i“((’
S
’s(ék%‘

é

2009/2010 - Ganjil - Minggu 3

Fasilkom Ul - IKI20100/1KI80110P

SUR - HMM - AA

Bound (Contrained) type variables

Utility.java:5: cannot find symbol
symbol : method compareTo (E)
location: class java.lang.Object

if (a[i] .compareTo(smallest) < 0)

A
l error

® The previous code doesn’t compile because we are

assuming that type £ implements the compareTo
method.

® How to solve it, can we use interface?

«((P
(.% %~

X
"
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Bound (Contrained) type variables

® The solution in Java 1.5 is to use a constrained type

variable. The method compareTo is enforced by the
interface Comparable

public static <E extends Comparable> E min(E[] a) {
E smallest = a[0];
for (int i = 1; i < a.length; i++)
if (a[i] .compareTo(smallest) < 0)

smallest = a[i];
return smallest;

((((’_
(.% %~

{
.
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Bound (Contrained) type variables

® We are telling the compiler that the method can be
used for arrays of E only when Eimplements the
Comparable interface.

® The method compiles but generates the warning
message:

Note: Utility.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.
= Why?

«((’_
» Q
V’ O
s(ék%‘

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Bound (Contrained) type variables

® The final version is
public static <E extends Comparable<E>> E min(E[] a) {

E smallest = a[0];

for (int 1 = 1; i < a.length; i++)

if (a[i].compareTo(smallest) < 0)
smallest = a[i];

return smallest;

}
® which compiles without warning messages.

K|

((.(('
P’ C
s(ék%\'

Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

SUR - HMM - AA

Bound (Contrained) type variables

B A more complicated example is:
<E extends Foo & Bar>

B where Foo and Bar are either interfaces or classes.

B Here, read the word extends as “extends or
implements’.

«((’_
» Q
V’ O
s(ék%‘

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Wildcard types: motivation

B Consider the problem of writing a routine that
prints out all the elements in a collection

B Here's how you might write it in an older version of
the language (i.e., a pre-5.0 release):
static void printCollection(Collection c) {
Iterator i = c.iterator();
for (k = 0; k < c.size(); k++) {

System.out.println(i.next());

«((P
(.% %~

X
"
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Wildcard types: motivation

® Using generics:
static void printCollection(Collection<Object> c) {

for (Object o : c¢)
System.out.println(o);
}
public static void main(String[] args) {
Collection<String> cs = new Vector<String>();
printCollection(cs); // Compile error

List<Integer> li = new ArrayList<Integer>(10);

printCollection(li); // Compile error

} é“ﬁ
T G, T
X

Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

K|

SUR - HMM - AA

Wildcard types: motivation

® Why the previous code does not compile?

«((’_
» Q
V, C
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

The mistery of erasure?

" See:
" generics/ErasedTypeEquivalence.java

4(.(('
V, C
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

The mistery of erasure?

® What is erasure?

® Any specific type information is erased when you use a
generic.

® There is no information about generic parameter
types available inside generic code.

B See:

® generics/ErasedTypeEquivalence.java
" generics/LostInformation.java

(((('
(.% %~

X
"
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

More on Erasure

B All generic type information is removed in the
resulting byte-code after compilation

B So, generic type information does not exist during
runtime

m Alfter)compilation, they all share same class (raw
class

® Example: The class that represents
ArrayList<String>,ArrayList<lnteger> is same class
that represents ArrayList

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

® Again, Type Erasure Example Code:
® True or False?

ArrayList<Integer> ai = new ArraylList<Integer>();
ArrayList<String> as = new ArrayList<String>();
Boolean bl = (ai.getClass() == as.getClass());

System.out.println("Do ArrayList<Integer> and
ArrayList<String> share same class? " + bl);

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

«((P

X
QT (\

Solution: use wildcard type argument <?>

static void printCollection(Collection<?> c) {
for (Object o : c¢)

System.out.println(o);

}

public static void main(String[] args) {
Collection<String> cs = new Vector<String>();

printCollection(cs); // No Compile error
List<Integer> li = new ArrayList<Integer>(10);

printCollection(li); // No Compile error

}
%
S <
SO
E e

Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

K|

SUR - HMM - AA

Solution: use wildcard type argument <?>

B Ccollection<?> means Collection of unknown type

® Accessing entries of Collection of unknown type
with Object type is safe.

B Question:

® Can we do:
printCollection (Collection<? extends Object> c)

® What is the different?

«((’_
» Q
V, C
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Another example: Pair

class Pair {
public Object first;

public Object second;
public Pair (Object £, Object s) { . . }

}

® We can also call this type of class as the the raw
type for Pair <T>

((.(('
V’ C
s(ék%‘

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Pair: Generics Version

class Pair <T> {

public T first;

public T second;

public Pair (T £, T s) {
first = £f; second = s;

}

public Pair () {

first = null; second = null;

K|

((.(('
V’ C
s(ék%‘

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Pair: Generics Version

® Can we have multiple type parameters?
® Can we have different type for first and second?

«((’_
» Q
V, O
s(ék%\'

~=0

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Pair: Multiple type

class Pair <T, U> {

public T first;

public U second;

public Pair (T x, U y) {
first = x; second = y;

}
public Pair () {

first = null; second = null;

}
B to instantiate: Pair <String, Number>

«((’_

g
"s«(Q

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Inheritances rules for generic type

SUR - HMM - AA

Pair (raw)

Employee

allows objects you can K'B -

safely read fram j allowvs nhjects wau

- Pair =7> can safely modify

Manager

Pair <7 extends Employee= Pair <? super Employee>

Pair <Manager> Pair <Employee> Pair <Employee= Pair <Object=>

= W
-

-\.,___ .|1
1
]

Mo rnlatinnshipsj

-
=

-

Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Comments on inheritance relations

B Pair<Manager> matches Pair<? extends
Employee>

" subtype relation (covariant typing)

B Pair<Object> matches Pair<? super Employee>
" supertype relation (contravariant typing)

B Pair<Employee> can contain only Employees, but
Pair<Object> may be assigned anything (Numbers)

" no subtype relation
B also: Pair<T> <= Pair<?> <= Pair (raw)

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

inheritance relations

" Try:

List <String> sl = new LinkedList <String> ();
List x = sl; // OK

x.add (new Integer (5)); // type safety warning

String str = sl.get (0); // throws ClassCast

%
(>
ggane

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

g
'ls(“ Q

Generic code and the JVM

B the JVM has no instantiations of generic types

B 3 generic type definition is compiled once only, and
a corresponding raw type is produced

® the name of the raw type is the same name but type
variables removed

B type variables are erased and replaced by their
bounding types (or Object if no bounds);

B See: raw type of class Pair in the previous slide
B byte code has some generic info, but objects don't

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Generic code and the JVM (cont.)

® Pair <String> and Pair <Employee> use the same
bytecode generated as the raw class Pair

® when translating generic expressions, such as
Pair <Employee> buddies = new Pair < . .;

Employee buddy = buddies.first;

® the compiler uses the raw class and automatically
inserts a cast from Object to Employee:

Employee buddy = (Employee) buddies.first;

((.((P
(

X
7
s((k

4

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Wildcard types

B some operations have no type constraints:

public static boolean hasNulls (Pair <?> p) {

== null || p.second == null;

return p.first ==

}
B alternatively, you could provide a generic method

public static <T> boolean hasNulls (Pair <T> p) {...}

B generally, prefer wildcard types (but use generic
method with type T for multiple parameters)

public static <T1l,T2> boolean hasNulls (Pair <T1l,T2> p)
{...}

i(((('
GG
’s(ék%‘

é]

2009/2010 - Ganjil - Minggu 3

Fasilkom Ul - IKI20100/1KI80110P

SUR - HMM - AA

Wildcard capture

® the wildcard type ? cannot be used as a declared type
of any variables.

Pair <?> p = new Pair <String> ("one", "two");
p.first = p.second; // ERROR: unknown type

® hut, can sometimes use a generic method to capture
the wildcard:

public static <T> void rotate (Pair <T> p) {
T temp = p.first; p.first = p.second;
p.second = temp;

}

® the compiler checks that such a capture is legal
B e.g., the context ensures that T is unambiguous &

> &
~=0

"s«(Q

SUR - HMM - AA Fasilkom Ul - IKI20100/1KI80110P 2009/2010 - Ganjil - Minggu 3

Exercise:

B See: generics/PairTest.java
® Create generics class: Triple<A,B,C>

i((((’
S
@«ék%\'

%

2009/2010 - Ganjil - Minggu 3

Fasilkom Ul - IKI20100/1KI80110P

SUR - HMM - AA

