
Struktur Data dan Algoritma

Suryana Setiawan, Ruli Manurung & Ade Azurat
(acknowledgments: Denny)

Fasilkom UI

SUR – HMM – AA

Fasilkom UI - IKI20100/ IKI80110P

Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic Type in Java

2SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Polymorphism vs Generics

 One way that object-oriented languages allow
generalization is through polymorphism.

 You can write a method that takes a base class
object as and then use that method with any
class derived from that base class.

 Sometimes being constrained to a single
hierarchy is too limiting.

3SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Interface vs Generics

 Interface allows us to loosen the single
inheritance.

 Sometimes even an interface is too restrictive.
An interface still requires that your code work
with that particular interface.

 Now, with generic type support, your method is
more general and can be used in more places.

 And, not only method but also class!

4SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Motivation

 Generics implement the concept of parameterized
type.
 We usually parameterize a method with their arguments

as values. Now we can parameterized not only with
values (object) but also with type (class).

 It provides type safe container that avoid possible
runtime error on collection.

 Ability to create more general-purpose code that
can be highly re-used (reusable and
expressiveness)

5SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Case study: Automobile Holder

 We would like to have a container of automobile.

6SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Non-generic approach

 See: generics/Holder1.java
 It is not very reusable, since it can't be used to hold

anything else.
 We prefer not to write a new one of these for every

type we encounter.

7SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Non-Generic Approach (2)

 See: generics/Holder2.java
 It is quite reusable.
 It could hold anything.
 But in one program, you may want to have it only

contains specific type.
 Possible run-time error due to incorrect casting.

8SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic Approach

 See: generic/Holder3.java
 It is still reusable
 It could be parameterized by any class
 Once it is parameterized, it could only contain a specific

type only.
 No possible run-time error due to incorrect casting.
 No casting needed.

9SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic Interfaces

 Generics also work with interface.
 See: generics/Generator.java

public interface Generator<T> {
 T next();
}

10SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Implementation of Generic Interface

 See: generics/Fibonacci.java
 Naïve algorithm.
 Let's go one step further and make an Iterable

Fibonacci generator.

11SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Iterable Fibonacci generator

 We may not always have control of the original
code. (to modify it)

 We may not want to rewrite when you don't have
to.

 How can we just reuse them, but we don't need to
modify it and overriding some of the methods.

 Solution: We can create adapter to produce the
desired interface.

 See: generics/IterableFibonacci.java

12SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Question

 Is the IterableFibonacci.java better than
Fibonacci.java?

 In what sense?
 How can we improve it?

13SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic Methods

 So far we've looked at parameterizing entire
classes.

 We can also parameterize methods within a class.
 The class itself may or may not be parameterized
 See: generics/GenericMethods.java

14SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

A Generic Method to use with Generators

 It is convenient to use a generator to fill a
Collection.

 It make sense to “generify” this operation.
 See:

 generics/Fibonacci.java
 generics/CoffeGenerator.java
 generics/Generators.java

15SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

General Purpose Generator

 Let's go further!
 We can create a class that produces a Generator for

any class that has default constructor.
 See:

 generics/BasicGenerator.java
 generics/CountedObject.java
 generics/BasicGeneratorDemo.java

16SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

The application of Generics

 A Set Utility
 Consider the mathematical relationships that can

be expressed using Sets.
 These can be conveniently defined as generic

methods, to be used with all different types.
 set of numbers, set of books and etc.
 See:

 generics/WatercolorSets.java
 net/mindview/util/Sets.java

17SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Anonymous Inner Class

 Generics can also be used with anonymous inner
class

 See: generics/BankTeller.java

18SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type

 Now suppose that we want to program a Minimum
function to find the minimum value in a generically
typed array?

19SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type

public class Utility {

 public static <E> E min(E[] a) {
 E smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(smallest) < 0)
 smallest = a[i];
 return smallest;
 }
}

20SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type variables

Utility.java:5: cannot find symbol

symbol : method compareTo(E)

location: class java.lang.Object

 if (a[i].compareTo(smallest) < 0)

 ^

1 error

 The previous code doesn’t compile because we are
assuming that type E implements the compareTo
method.

 How to solve it, can we use interface?

21SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type variables

 The solution in Java 1.5 is to use a constrained type
variable. The method compareTo is enforced by the
interface Comparable

public static <E extends Comparable> E min(E[] a) {

 E smallest = a[0];

 for (int i = 1; i < a.length; i++)

 if (a[i].compareTo(smallest) < 0)
 smallest = a[i];
 return smallest;

}

22SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type variables

 We are telling the compiler that the method can be
used for arrays of E only when E implements the
Comparable interface.

 The method compiles but generates the warning
message:

Note: Utility.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.
 Why?

23SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type variables

 The final version is
public static <E extends Comparable<E>> E min(E[] a) {

 E smallest = a[0];

 for (int i = 1; i < a.length; i++)

 if (a[i].compareTo(smallest) < 0)

 smallest = a[i];
 return smallest;

}

 which compiles without warning messages.

24SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Bound (Contrained) type variables

 A more complicated example is:
 <E extends Foo & Bar>

 where Foo and Bar are either interfaces or classes.
 Here, read the word extends as “extends or

implements”.

25SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Wildcard types: motivation

 Consider the problem of writing a routine that
prints out all the elements in a collection

 Here's how you might write it in an older version of
the language (i.e., a pre-5.0 release):

static void printCollection(Collection c) {

 Iterator i = c.iterator();

 for (k = 0; k < c.size(); k++) {

 System.out.println(i.next());
 }

}

26SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Wildcard types: motivation

 Using generics:
static void printCollection(Collection<Object> c) {

 for (Object o : c)

 System.out.println(o);
}

public static void main(String[] args) {
 Collection<String> cs = new Vector<String>();

 printCollection(cs); // Compile error

 List<Integer> li = new ArrayList<Integer>(10);

 printCollection(li); // Compile error

}

27SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Wildcard types: motivation

 Why the previous code does not compile?

28SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

The mistery of erasure?

 See:
 generics/ErasedTypeEquivalence.java

29SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

The mistery of erasure?

 What is erasure?
 Any specific type information is erased when you use a

generic.
 There is no information about generic parameter

types available inside generic code.
 See:

 generics/ErasedTypeEquivalence.java
 generics/LostInformation.java

30SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

More on Erasure

 All generic type information is removed in the
resulting byte-code after compilation

 So, generic type information does not exist during
runtime

 After compilation, they all share same class (raw
class)

 Example: The class that represents
ArrayList<String>,ArrayList<Integer> is same class
that represents ArrayList

31SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Question:

 Again, Type Erasure Example Code:
 True or False?

ArrayList<Integer> ai = new ArrayList<Integer>();

ArrayList<String> as = new ArrayList<String>();

Boolean b1 = (ai.getClass() == as.getClass());

System.out.println("Do ArrayList<Integer> and
ArrayList<String> share same class? " + b1);

32SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Solution: use wildcard type argument <?>

static void printCollection(Collection<?> c) {

 for (Object o : c)

 System.out.println(o);

}

public static void main(String[] args) {

 Collection<String> cs = new Vector<String>();

 printCollection(cs); // No Compile error

 List<Integer> li = new ArrayList<Integer>(10);

 printCollection(li); // No Compile error

}

33SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Solution: use wildcard type argument <?>

 Collection<?> means Collection of unknown type
 Accessing entries of Collection of unknown type

with Object type is safe.
 Question:

 Can we do:
 printCollection(Collection<? extends Object> c)

 What is the different?

34SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Another example: Pair

class Pair {
 public Object first;

 public Object second;

 public Pair (Object f, Object s) { . . }

}
 We can also call this type of class as the the raw

type for Pair <T>

35SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Pair: Generics Version

class Pair <T> {
 public T first;

 public T second;

 public Pair (T f, T s) {

 first = f; second = s;

 }

 public Pair () {

 first = null; second = null;

 }
}

36SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Pair: Generics Version

 Can we have multiple type parameters?
 Can we have different type for first and second?

37SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Pair: Multiple type

class Pair <T, U> {

 public T first;

 public U second;

 public Pair (T x, U y) {

 first = x; second = y;

 }

 public Pair () {

 first = null; second = null;

 }

}

 to instantiate: Pair <String, Number>

38SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Inheritances rules for generic type

39SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Comments on inheritance relations

 Pair<Manager> matches Pair<? extends
Employee>
 subtype relation (covariant typing)

 Pair<Object> matches Pair<? super Employee>
 supertype relation (contravariant typing)

 Pair<Employee> can contain only Employees, but
Pair<Object> may be assigned anything (Numbers)
 no subtype relation

 also: Pair<T> <= Pair<?> <= Pair (raw)

40SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

inheritance relations

 Try:
List <String> sl = new LinkedList <String> ();

List x = sl; // OK

x.add (new Integer (5)); // type safety warning

. .

String str = sl.get (0); // throws ClassCast

41SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic code and the JVM

 the JVM has no instantiations of generic types
 a generic type definition is compiled once only, and

a corresponding raw type is produced
 the name of the raw type is the same name but type

variables removed
 type variables are erased and replaced by their

bounding types (or Object if no bounds);
 See: raw type of class Pair in the previous slide
 byte code has some generic info, but objects don't

42SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Generic code and the JVM (cont.)

 Pair <String> and Pair <Employee> use the same
bytecode generated as the raw class Pair

 when translating generic expressions, such as
Pair <Employee> buddies = new Pair < . .;

Employee buddy = buddies.first;

 the compiler uses the raw class and automatically
inserts a cast from Object to Employee:

Employee buddy = (Employee) buddies.first;

43SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Wildcard types

 some operations have no type constraints:
public static boolean hasNulls (Pair <?> p) {

 return p.first == null || p.second == null;

}

 alternatively, you could provide a generic method
public static <T> boolean hasNulls (Pair <T> p) {...}

 generally, prefer wildcard types (but use generic
method with type T for multiple parameters)

public static <T1,T2> boolean hasNulls (Pair <T1,T2> p)
{...}

44SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Wildcard capture

 the wildcard type ? cannot be used as a declared type
of any variables.

Pair <?> p = new Pair <String> ("one", "two"); . .

p.first = p.second; // ERROR: unknown type

 but, can sometimes use a generic method to capture
the wildcard:

public static <T> void rotate (Pair <T> p) {

 T temp = p.first; p.first = p.second;

 p.second = temp;

}

 the compiler checks that such a capture is legal
 e.g., the context ensures that T is unambiguous

45SUR – HMM – AA Fasilkom UI – IKI20100/IKI80110P 2009/2010 – Ganjil – Minggu 3

Exercise:

 See: generics/PairTest.java
 Create generics class: Triple<A,B,C>

